In May of 2023, NVIDIA released the NVIDIA GPU Manager for VMware vCenter. This appliance allows you to manage your NVIDIA vGPU Drivers for your VMware vSphere environment.
Since the release, I’ve had a chance to deploy it, test it, and use it, and want to share my findings.
In this post, I’ll cover the following (click to skip ahead):
The NVIDIA GPU Manager is an (OVA) appliance that you can deploy in your VMware vSphere infrastructure (using vCenter and ESXi) to act as a driver (and update) repository for vLCM (vSphere Lifecycle Manager).
In addition to acting as a repo for vLCM, it also installs a plugin on your vCenter that provides a GUI for browsing, selecting, and downloading NVIDIA vGPU host drivers to the local repo running on the appliance. These updates can then be deployed using LCM to your hosts.
In short, this allows you to easily select, download, and deploy specific NVIDIA vGPU drivers to your ESXi hosts using vLCM baselines or images, simplifying the entire process.
Supported vSphere Versions
The NVIDIA GPU Manager supports the following vSphere releases (vCenter and ESXi):
VMware vSphere 8.0 (and later)
VMware vSphere 7.0U2 (and later)
The NVIDIA GPU Manager supports vGPU driver releases 15.1 and later, including the new vGPU 16 release version.
How to deploy and configure the NVIDIA GPU Manager for VMware vCenter
To deploy the NVIDIA GPU Manager Appliance, we have to download an OVA (from NVIDIA’s website), then deploy and configure it.
See below for the step by step instructions:
Download the NVIDIA GPU Manager
Log on to the NVIDIA Application Hub, and navigate to the “NVIDIA Licensing Portal” (https://nvid.nvidia.com).
Navigate to “Software Downloads” and select “Non-Driver Downloads”
Change Filter to “VMware vCenter” (there is both VMware vSphere, and VMware vCenter, pay attention to select the correct).
To the right of “NVIDIA GPU Manager Plug-in 1.0.0 for VMware vCenter”, click “Download” (see below screenshot).
After downloading the package and extracting, you should be left with the OVA, along with Release Notes, and the User Guide. I highly recommend reviewing the documentation at your leisure.
Deploy and Configure the NVIDIA GPU Manager
We will now deploy the NVIDIA GPU Manager OVA appliance:
Deploy the OVA to either a cluster with DRS, or a specific ESXi host. In vCenter either right click a cluster or host, and select “Deploy OVF Template”. Choose the GPU Manager OVA file, and continue with the wizard.
Configure Networking for the Appliance
You’ll need to assign an IP Address, and relevant networking information.
I always recommend creating DNS (forward and reverse entries) for the IP.
Finally, power on Appliance.
We must now create a role and service account that the GPU Manager will use to connect to the vCenter server.
While the vCenter Administrator account will work, I highly recommend creating a service account specifically for the GPU Manager that only has the required permissions that are necessary for it to function.
Log on to your vCenter Server
Click on the hamburger menu item on the top left, and open “Administration”.
Under “Access Control” select Roles.
Select New to create a new role. We can call it “NVIDIA Update Services”.
***PLEASE NOTE: The above permissions were provided in the documentation and did not work for me (resulted in an insufficient privileges error). To resolve this, I chose “Select All” for “VMware vSphere Lifecycle Manager”, which resolved the issue.***
Save the Role
On the left hand side, navigate to “Users and Groups” under “Single Sign On”
Change the domain to your local vSphere SSO domain (vsphere.local by default)
Create a new user account for the NVIDIA appliance, as an example you could use “nvidia-svc”, and choose a secure password.
Navigate to “Global Permissions” on the left hand side, and click “Add” to create a new permission.
Set the domain, and choose the new “nvidia-svc” service account we created, and set the role to “NVIDIA Update Services”, and check “Propagate to Children”.
You have now configured the service account.
Now, we will perform the initial configuration of the appliance. To configure the application, we must do the following:
Access the appliance using your browser and the IP you configured above (or FQDN)
Create a new password for the administrative “vcp_admin” account. This account will be used to manage the appliance.
A secret key will be generated that will allow the password to be reset, if required. Save this key somewhere safe.
We must now register the appliance (and plugin) with our vCenter Server. Click on “REGISTER”.
Enter the FQDN or IP of your vCenter server, the NVIDIA Service account (“nvidia-svc” from example), and password.
Once the GPU Manager is registered with your vCenter server, the remainder of the configuration will be completed from the vCenter GPU.
The registration process will install the GPU Manager Plugin in to VMware vCenter
The registration process will also configure a repository in LCM (this repo is being hosted on the GPU manager appliance).
We must now configure an API key on the NVIDIA Licensing portal, to allow your GPU Manager to download updates on your behalf.
Open your browser and navigate to https://nvid.nvidia.com. Then select “NVIDIA LICENSING PORTAL”. Login using your credentials.
On the left hand side, select “API Keys”.
On the upper right hand, select “CREATE API KEY”.
Give the key a name, and for access type choose “Software Downloads”. I would recommend extending the key validation time, or disabling key expiration.
The key should now be created.
Click on “view api key”, and record the key. You’ll need to enter this in later in to the vCenter GPU Manager plugin.
And now we can finally log on to the vCenter interface, and perform the final configuration for the appliance.
Log on to the vCenter client, click on the hamburger menu, and select “NVIDIA GPU Manager”.
Enter the API key you created above in to the “NVIDIA Licensing Portal API Key” field, and select “Apply”.
The appliance should now be fully configured and activated.
Configuration is complete.
We have now fully deployed and completed the base configuration for the NVIDIA GPU Manager.
Using the NVIDIA GPU Manager to manage, update, and deploy vGPU drivers to ESXi hosts
In this section, I’ll be providing an overview of how to use the NVIDIA GPU Manager to manage, update, and deploy vGPU drivers to ESXi hosts. But first, lets go over the workflow…
The workflow is a simple one:
Using the vCenter client plugin, you choose the drivers you want to deploy. These get downloaded to the repo on the GPU Manager appliance, and are made available to Lifecycle Manager.
You then use Lifecycle Manager to deploy the vGPU Host Drivers to the applicable hosts, using baselines or images.
As you can see, there’s not much to it, despite all the configuration we had to do above. While it is very simple, it simplifies management quite a bit, especially if you’re using images with Lifecycle Manager.
To choose and download the drivers, load up the plugin, use the filters to filter the list, and select your driver to download.
As you can see in the example, I chose to download the vGPU 15.3 host driver. Once completed, it’ll be made available in the repo being hosted on the appliance.
Once LCM has a changed to sync with the updated repos, the driver is then made available to be deployed. You can then deploy using baselines or host images.
In the example above, I added the vGPU 16 (535.54.06) host driver to my clusters update image, which I will then remediate and deploy to all the hosts in that cluster. The vGPU driver was made available from the download using GPU Manager.
When it comes to virtualized workloads, one thing I commonly see overlooked in the design of the solution, is the placement of workloads. In this post, I want to cover VMware vSphere VM placement rules using the “VM/Host Rules” feature.
This is a feature that I commonly see overlooked and not configured, especially in smaller single cluster environments, however I’ve also seen this happen in very large scale environments as well.
Let’s cover the why, what, who, and how…
VM Workloads
While VMware vSphere does have a number of technologies built in for redundancy, load-balancing, and availability, as part of the larger solution we often find our workloads, specifically 3rd party platforms, with their own solutions that accomplish the same thing.
We need to identify which HA (High Availability) or redundancy solution to use, based on the application, service, and how it works.
For example, using VMware vSphere HA, or High Availability, if vCenter (and/or vCLS) detects a host goes offline, it can restart the workload on other online hosts. There is time associated with the detection and boot time, resulting in a loss of service during this period.
Third party solutions often have their own high availability or redundancy built in to the solution, such as Microsoft Active Directory. In this case with a standard configuration, at any time, any domain controller can respond to a clients request for resources. If one DC goes offline, other DCs can respond to the request resulting in no downtime.
Obviously, in the case of Active Directory Domain Controllers, you’d much prefer to have multiple DCs in your environment, instead of using one with vSphere HA.
Additionally, if you did have multiple domain controllers, you’d want to make sure they aren’t all placed on the same ESXi host. This is where we start to incorporate VM placement in to our solution.
VM Placement
When it comes to 3rd party solutions like mentioned above, we need to identify these workloads and factor them in to the design of the solution we are either implementing, maintaining, or improving.
Example of VM workloads used with VM Placement
A few examples of these workloads with their own load-balancing and availability technologies:
Microsoft Windows Active Directory Domain Controllers
Microsoft Windows Servers running DNS/DHCP Servers
Virtualized Active/Active or Active/Passive Firewall Appliances
VMware Horizon UAG (Unified Access Gateway) configured in HA mode
Other servers/services that have their own availability systems
As you can see, the applications all have their own special solution for availability, so we must insure the different “nodes” or “instances” are running on different ESXi hosts to avoid a host failure bringing down the entire solution.
Unless otherwise specified by the 3rd party vendor, I would recommend using VM/Host Rules in combination with vSphere DRS and HA.
Configuring VM Placement with VM/Host Rules
To configure these rules, follow the instructions below:
Log on to your VMware vCenter Server
Select a Cluster
Click on the “Configure” tab, and then “VM/Host Rules”
Here you can Add/Edit/Delete VM Host Rules
Click on “Add”, and give the rule a new name (Example: Domain Controllers)
For “Type”, select “Separate Virtual Machines”
Click “Add” and select your Domain Controllers and add them to the rule.
After you click “OK”, the rule should now be saved, and DRS will make sure these VMs are now running on separate hosts.
Below you can see another example of a configured system, separating 2 Active/Passive Firewall appliances.
As you can see, VM placement with VM/Host Rules is very easy to configure and deploy.
Additional Considerations
Note, if you implement these rules and do not have enough hosts to fullfill the requirements, the hosts may fail to be evacuated by DRS when placing in maintenance mode, or remediating with vLCM (Lifecycle Manager).
In this case, you’ll need to manually vMotion the VM’s to other hosts (to violate the rule) or shut some down.
A few months ago, you may have seen my post detailing my experience with ESXi 7.0 on HP Proliant DL360p Gen8 servers. I now have an update as I have successfully loaded ESXi 8.0 on HPE Proliant DL360p Gen8 servers, and want to share my experience.
It wasn’t as eventful as one would have expected, but I wanted to share what’s required, what works, and stability observations.
Please note, this is NOT supported and NOT recommended for production environments. Use the information at your own risk.
A special thank you goes out to William Lam and his post on Homelab considerations for vSphere 8, which provided me with the boot parameter required to allow legacy CPUs.
ESXi on the DL360p Gen8
With the release of vSphere 8.0 Update 1, and all the new features and functionality that come with the vSphere 8 release as a whole, I decided it was time to attempt to update my homelab.
In my setup, I have the following:
2 x HPE Proliant DL360p Gen8 Servers
Dual Intel Xeon E5-2660v2 Processors in each server
USB and/or SD for booting ESXi
No other internal storage
NVIDIA A2 vGPU (for use with VMware Horizon)
External SAN iSCSI Storage
Since I have 2 servers, I decided to do a fresh install using the generic installer, and then use the HPE addon to install all the HPE addons, drivers, and software. I would perform these steps on one server at a time, continuing to the next if all went well.
I went ahead and documented the configuration of my servers beforehand, and had already had upgraded my VMware vCenter vCSA appliance from 7U3 to 8U1. Note, that you should always upgrade your vCenter Server first, and then your ESXi hosts.
To my surprise the install went very smooth (after enabling legacy CPUs in the installer) on one of the hosts, and after a few days with no stability issues, I then proceeded and upgraded the 2nd host.
I’ve been running with 100% for 25+ days without any issues.
The process – Installing ESXi 8.0
I used the following steps to install VMware vSphere ESXi 8 on my HP Proliant Gen8 Server:
Download the Generic ESXi installer from VMware directly.
Boot server with Generic ESXi installer media (CD or ISO)
IMPORTANT: Press “Shift + o” (Shift key, and letter “o”) to interrupt the ESXi boot loader, and add “AllowLegacyCPU=true” to the kernel boot parameters.
Continue to install ESXi as normal.
You may see warnings about using a legacy CPU, you can ignore these.
Complete initial configuration of ESXi host
Mount NFS or iSCSI datastore.
Copy HPE Custom Addon for ESXi zip file to datastore.
Enable SSH on host (or use console).
Place host in to maintenance mode.
Run “esxcli software vib install -d /vmfs/volumes/datastore-name/folder-name/HPE-801.0.0.11.3.1.1-Jun2023-Addon-depot.zip” from the command line.
The install will run and complete successfully.
Restart your server as needed, you’ll now notice that not only were HPE drivers installed, but also agents like the Agentless management agent, and iLO integrations.
After that, everything was good to go… Here you can see version information from one of the ESXi hosts:
What works, and what doesn’t
I was surprised to see that everything works, including the P420i embedded RAID controller. Please note that I am not using the RAID controller, so I have not performed extensive testing on it.
All Hardware health information is present, and ESXi is functioning as one would expect if running a supported version on the platform.
Additional Information
Note that with vSphere 8, VMware is deprecating vLCM baselines. Your focus should be to update your ESXi instances using cluster image based update images. You can incorporate vendor add-ons and components to create a customized image for deployment.
You might ask if/what the procedure is for updating Enhanced Linked Mode vCenter Server Instances, or is there even any considerations that apply?
vCenter Enhanced Link Mode is a feature that allows you to link a total of 15 vCenter Instances in to a single, Single Sign On (SSO) vSphere domain. This allows you to have a single set of credentials to manage all 15 instances, as well as the ability to manage all of them from a single pane of glass.
When it comes to environments with multiple vCenter instance and/or vCSA appliances, this really helps manageability, and visibility.
Enhanced Linked Mode Upgrade Considerations
To answer the question above: Yes, when you’re running Enhanced Linked Mode (ELM) to link multiple vCenter Server, special considerations and requirements exist when it comes to updating or upgrading your vCenter Server instances and vCSA appliances.
Not only have these procedures been documented in older VMware documentation, but I recently reviewed and confirmed the best practices with VMware GSS while on a support case.
Procedure for updating vCenter with ELM
Configure/Confirm that the vCenter File-Based Backup in VAMI is configured, functioning, and that you are creating valid file based backups.
Create a manual file-based backup with VAMI
Power down all vCenter Instances and vCSA Appliances in your environment
Perform a cold snapshot of all vCenter Instances and vCSA appliances
*This is critical* – You need a valid offline snapshot taken of all appliances powered off at the same point in time
Power on the vCenter/vCSA Virtual Machines (VMs)
Perform the update or upgrade
Recovering from a failed Update
IMPORTANT: In the event that an update or upgrade fails, you must revert all vCenter Instances and/or vCSA appliances back to the previous snapshot!
You cannot selectively choose single or individual instances, as this may cause mismatches in data and configuration between the instances as they have databases that are not in sync, and are from different points in time.
Additionally, if you are in a situation where you’re considering or planning to restore previous snapshots to recover from a failed update, you should do so sooner than later. As time progresses, service accounts and identifiers update in the VMware vSphere infrastructure. Delaying the restore too long could cause this information to get out of sync with the ESXi hosts after performing a snapshot restore/revert.
In this NVIDIA vGPU Troubleshooting Guide, I’ll help show you how to troubleshoot NVIDIA vGPU issues on VMware platforms, including VMware Horizon and VMware Tanzu. This guide applies to the full vGPU platform, so it’s relevant for VDI, AI, ML, and Kubernetes workloads, as well other virtualization platforms.
This guide will provide common troubleshooting methods, along with common issues and problems associated with NVIDIA vGPU as well as their fixes.
Please note, there are numerous other additional methods available to troubleshoot your NVIDIA vGPU deployment, including 3rd party tools. This is a general document provided as a means to get started learning how to troubleshoot vGPU.
NVIDIA vGPU
NVIDIA vGPU is a technology platform that includes a product line of GPUs that provide virtualized GPUs (vGPU) for Virtualization environments. Using a vGPU, you can essentially “slice” up a physical GPU and distribute Virtual GPUs to a number of Virtual Machines and/or Kubernetes containers.
These virtual machines and containers can then use these vGPU’s to provide accelerated workloads including VDI (Virtual Desktop Infrastructure), AI (Artificial Intelligence), and ML (Machine Learning).
While the solution works beautifully, when deployed incorrectly or if the solution isn’t maintained, issues can occur requiring troubleshooting and remediation.
The NVIDIA vGPU driver comes with a utility called the “NVIDIA System Management Interface”. This CLI program allows you to monitor, manage, and query your NVIDIA vGPU (including non-vGPU GPUs).
Simply running the command with no switches or flags, allow you to query and pull basic information on your vGPU, or multiple vGPUs.
For a list of available switches, you can run: “nvidia-smi -h”.
Running “nvidia-smi” on the ESXi Host
To use “nvidia-smi” on your VMware ESXi host, you’ll need to SSH in and/or enable console access.
When you launch “nvidia-smi” on the ESXi host, you’ll see information on the physical GPU, as well as the VM instances that are consuming a virtual GPU (vGPU). This usage will also provide information like fan speeds, temperatures, power usage and GPU utilization.
[root@ESXi-Host:~] nvidia-smi
Sat Mar 4 21:26:05 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.85.07 Driver Version: 525.85.07 CUDA Version: N/A |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 NVIDIA A2 On | 00000000:04:00.0 Off | Off |
| 0% 36C P8 8W / 60W | 7808MiB / 16380MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 2108966 C+G VM-WS02 3904MiB |
| 0 N/A N/A 2108989 C+G VM-WS01 3904MiB |
+-----------------------------------------------------------------------------+
This will aid with troubleshooting potential issues specific to the host or the VM. The following pieces of information are helpful:
Driver Version
GPU Fan and Temperature Information
Power Usage
GPU Utilization (GPU-Util)
ECC Information and Error Count
Virtual Machine VMs assigned a vGPU
vGPU Type (C+G means Compute and Graphics)
Additionally, instead of running once, you can issue “nvidia-smi -l x” replacing “x” with the number of seconds you’d like it to auto-loop and refresh.
Example:
nvidia-smi -l 3
The above would refresh and loop “nvidia-smi” every 3 seconds.
For vGPU specific information from the ESXi host, you can run:
nvidia-smi vgpu
root@ESXi-Host:~] nvidia-smi vgpu
Mon Mar 6 11:47:44 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.85.07 Driver Version: 525.85.07 |
|---------------------------------+------------------------------+------------+
| GPU Name | Bus-Id | GPU-Util |
| vGPU ID Name | VM ID VM Name | vGPU-Util |
|=================================+==============================+============|
| 0 NVIDIA A2 | 00000000:04:00.0 | 0% |
| 3251713382 NVIDIA A2-4Q | 2321577 VMWS01 | 0% |
+---------------------------------+------------------------------+------------+
This command shows information on the vGPU instances currently provisioned.
There are also a number of switches you can throw at this to get even more information on vGPU including scheduling, vGPU types, accounting, and more. Run the following command to view the switches:
nvidia-smi vgpu -h
Another common switch I use on the ESXi host with vGPU for troubleshooting is: “nvidia-smi -q”, which provides lots of information on the physical GPU in the host:
[root@ESXi-HOST:~] nvidia-smi -q
==============NVSMI LOG==============
Timestamp : Sat Mar 4 21:26:18 2023
Driver Version : 525.85.07
CUDA Version : Not Found
vGPU Driver Capability
Heterogenous Multi-vGPU : Supported
Attached GPUs : 1
GPU 00000000:04:00.0
Product Name : NVIDIA A2
Product Brand : NVIDIA
Product Architecture : Ampere
Display Mode : Enabled
Display Active : Disabled
Persistence Mode : Enabled
vGPU Device Capability
Fractional Multi-vGPU : Not Supported
Heterogeneous Time-Slice Profiles : Supported
Heterogeneous Time-Slice Sizes : Not Supported
MIG Mode
Current : N/A
Pending : N/A
Accounting Mode : Enabled
Accounting Mode Buffer Size : 4000
Driver Model
Current : N/A
Pending : N/A
Serial Number : XXXN0TY0SERIALZXXX
GPU UUID : GPU-de23234-3450-6456-e12d-bfekgje82743a
Minor Number : 0
VBIOS Version : 94.07.5B.00.92
MultiGPU Board : No
Board ID : 0x400
Board Part Number : XXX-XXXXX-XXXX-XXX
GPU Part Number : XXXX-XXX-XX
Module ID : 1
Inforom Version
Image Version : G179.0220.00.01
OEM Object : 2.0
ECC Object : 6.16
Power Management Object : N/A
GPU Operation Mode
Current : N/A
Pending : N/A
GSP Firmware Version : N/A
GPU Virtualization Mode
Virtualization Mode : Host VGPU
Host VGPU Mode : SR-IOV
IBMNPU
Relaxed Ordering Mode : N/A
PCI
Bus : 0x04
Device : 0x00
Domain : 0x0000
Device Id : 0x25B610DE
Bus Id : 00000000:04:00.0
Sub System Id : 0x157E10DE
GPU Link Info
PCIe Generation
Max : 3
Current : 1
Device Current : 1
Device Max : 4
Host Max : N/A
Link Width
Max : 16x
Current : 8x
Bridge Chip
Type : N/A
Firmware : N/A
Replays Since Reset : 0
Replay Number Rollovers : 0
Tx Throughput : 0 KB/s
Rx Throughput : 0 KB/s
Atomic Caps Inbound : N/A
Atomic Caps Outbound : N/A
Fan Speed : 0 %
Performance State : P8
Clocks Throttle Reasons
Idle : Active
Applications Clocks Setting : Not Active
SW Power Cap : Not Active
HW Slowdown : Not Active
HW Thermal Slowdown : Not Active
HW Power Brake Slowdown : Not Active
Sync Boost : Not Active
SW Thermal Slowdown : Not Active
Display Clock Setting : Not Active
FB Memory Usage
Total : 16380 MiB
Reserved : 264 MiB
Used : 7808 MiB
Free : 8306 MiB
BAR1 Memory Usage
Total : 16384 MiB
Used : 1 MiB
Free : 16383 MiB
Compute Mode : Default
Utilization
Gpu : 0 %
Memory : 0 %
Encoder : 0 %
Decoder : 0 %
Encoder Stats
Active Sessions : 0
Average FPS : 0
Average Latency : 0
FBC Stats
Active Sessions : 0
Average FPS : 0
Average Latency : 0
Ecc Mode
Current : Disabled
Pending : Disabled
ECC Errors
Volatile
SRAM Correctable : N/A
SRAM Uncorrectable : N/A
DRAM Correctable : N/A
DRAM Uncorrectable : N/A
Aggregate
SRAM Correctable : N/A
SRAM Uncorrectable : N/A
DRAM Correctable : N/A
DRAM Uncorrectable : N/A
Retired Pages
Single Bit ECC : N/A
Double Bit ECC : N/A
Pending Page Blacklist : N/A
Remapped Rows
Correctable Error : 0
Uncorrectable Error : 0
Pending : No
Remapping Failure Occurred : No
Bank Remap Availability Histogram
Max : 64 bank(s)
High : 0 bank(s)
Partial : 0 bank(s)
Low : 0 bank(s)
None : 0 bank(s)
Temperature
GPU Current Temp : 37 C
GPU T.Limit Temp : N/A
GPU Shutdown Temp : 96 C
GPU Slowdown Temp : 93 C
GPU Max Operating Temp : 86 C
GPU Target Temperature : N/A
Memory Current Temp : N/A
Memory Max Operating Temp : N/A
Power Readings
Power Management : Supported
Power Draw : 8.82 W
Power Limit : 60.00 W
Default Power Limit : 60.00 W
Enforced Power Limit : 60.00 W
Min Power Limit : 35.00 W
Max Power Limit : 60.00 W
Clocks
Graphics : 210 MHz
SM : 210 MHz
Memory : 405 MHz
Video : 795 MHz
Applications Clocks
Graphics : 1770 MHz
Memory : 6251 MHz
Default Applications Clocks
Graphics : 1770 MHz
Memory : 6251 MHz
Deferred Clocks
Memory : N/A
Max Clocks
Graphics : 1770 MHz
SM : 1770 MHz
Memory : 6251 MHz
Video : 1650 MHz
Max Customer Boost Clocks
Graphics : 1770 MHz
Clock Policy
Auto Boost : N/A
Auto Boost Default : N/A
Voltage
Graphics : 650.000 mV
Fabric
State : N/A
Status : N/A
Processes
GPU instance ID : N/A
Compute instance ID : N/A
Process ID : 2108966
Type : C+G
Name : VM-WS02
Used GPU Memory : 3904 MiB
GPU instance ID : N/A
Compute instance ID : N/A
Process ID : 2108989
Type : C+G
Name : VM-WS01
Used GPU Memory : 3904 MiB
As you can see, you can pull quite a bit of information in detail from the vGPU, as well as the VM processes.
Running “nvidia-smi” on the VM Guest
You can also run “nvidia-smi” inside of the guest VM, which will provide you information on the vGPU instance that is being provided to that specific VM, along with information on the guest VM’s processes that are utilizing the GPU.
This is helpful for providing information on the guest VM’s usage of the vGPU instance, as well as processes that require GPU usage.
Virtual Machine log files
Each Virtual Machine has a “vmware.log” file inside of the VM’s folder on the datastore.
To identify logging events pertaining to NVIDIA vGPU, you can search for the “vmiop” string inside of the vmware.log file.
The above will read out any lines inside of the log that have the “vmiop” string inside of them. The “-i” flag instructs grep to ignore case sensitivity.
This logs provide initialization information, licensing information, as well as XID error codes and faults.
ESXi Host log files
Additionally, since the ESXi host is running the vGPU Host Driver (vGPU Manager), it also has logs that pertain and assist with vGPU troubleshooting.
Some commands you can run are:
cat /var/log/vmkernel.log | grep -i vmiop
cat /var/log/vmkernel.log | grep -i nvrm
cat /var/log/vmkernel.log | grep -i nvidia
The above commands will pull NVIDIA vGPU related log items from the ESXi log files.
Using “dxdiag” in the guest VM
Microsoft has a tool called “dxdiag” which provides diagnostic infromation for testing and troubleshooting video (and sound) with DirectX.
I find this tool very handy for quickly verifying
As you can see:
DirectDraw Acceleration: Enabled
Direct3D Acceleration: Enabled
AGP Texture Acceleration: Enabled
DirectX 12 Ultimate: Enabled
The above show that hardware acceleration is fully functioning with DirectX. This is a indicator that things are generally working as expected. If you have a vGPU and one of the first three is showing as disabled, then you have a problem that requires troubleshooting. Additionally, if you do not see your vGPU card, then you have a problem that requires troubleshooting.
Please Note: You may not see “DirectX 12 Ultimate” as this is related to licensing.
Using the “VMware Horizon Performance Monitor”
The VMware Horizon Performance Monitor, is a great tool that can be installed by the VMware Horizon Agent, that allows you to pull information (stats, connection information, etc) for the session. Please note that this is not installed by default, and must be selected when running the Horizon Agent installer.
When it comes to troubleshooting vGPU, it’s handy to use this too to confirm you’re getting H.264 or H.265/HEVC offload from the vGPU instance, and also get information on how many FPS (Frames Per Second) you’re getting from the session.
Once opening, you’ll change the view above using the specified selector, and you can see what the “Encoder Name” is being used to encode the session.
Examples of GPU Offload “Encoder Name” types:
NVIDIA NvEnc HEVC 4:2:0 – This is using the vGPU offload using HEVC
NVIDIA NvEnc HEVC 4:4:4 – This is using the vGPU offload using HEVC high color accuracy
NVIDIA NvEnc H264 4:2:0 – This is using the vGPU offload using H.264
NVIDIA NvEnc H264 4:4:4 – This is using the vGPU offload using H.264 high color accuracy
Examples of Software (CPU) Session “Encoder Name” types:
BlastCodec – New VMware Horizon “Blast Codec”
h264 4:2:0 – Software CPU encoded h.264
If you’re seeing “NVIDIA NvEnc” in the encoder name, then the encoding is being offloaded to the GPU resulting in optimum performance. If you don’t see it, it’s most likely using the CPU for encoding, which is not optimal if you have a vGPU, and requires further troubleshooting.
NVIDIA vGPU Known Issues
Depending on the version of vGPU that you are running, there can be “known issues”.
When viewing the NVIDIA vGPU Documentation, you can view known issues, and fixes that NVIDIA may provide. Please make sure to reference the documentation specific to the version you’re running and/or the version that fixes the issues you’re experiencing.
vGPU Common Problems
There are a number of common problems that I come across when I’m contacted to assist with vGPU deployments.
Please see below for some of the most common issues I experience, along with their applicable fix/workaround.
XID Error Codes
When viewing your Virtual Machine VM or ESXi log file, and experiencing an XID error or XID fault, you can usually look up the error codes.
The table on this page allows you to lookup the XID code, find the cause, and also provides information if the issue is realted to “HW Error” (Hardware Error), “Driver Error”, “User App Error”, “System Memory Corruption”, “Bus Error”, “Thermal Issue”, or “FB Corruption”.
One can see XID code 45, as well as XID code 43, which after looking up on NVIDIA’s document, states:
XID 43 – GPU stopped processing
Possible Cause: Driver Error
Possible Cause: User App Error
XID 45 – Preemptive cleanup, due to previous errors — Most likely to see when running multiple cuda applications and hitting a DBE
Possible Cause: Driver Error
In the situation above, one can deduce that the issue is either Driver Error, Application Error, or a combination of both. In this specific case, you could try changing drivers to troubleshoot.
vGPU Licensing
You may experience issues in your vGPU deployment due to licensing issues. Depending on how you have you environment configured, you may be running in an unlicensed mode and not be aware.
In the event that the vGPU driver cannot obtain a valid license, it will run for 20 minutes with full capabilities. After that the performance and functionality will start to degrade. After 24 hours it will degrade even further.
Some symptoms of issues experienced when unlicensed:
Users experiencing laggy VDI sessions
Performance issues
Frames per Second (FPS) limited to 15 fps or 3 fps
Applications using OpenCL, CUDA, or other accelerated APIs fail
Additionally, some error messages and event logs may occur:
Event ID 2, “NVIDIA OpenGL Driver” – “The NVIDIA OpenGL driver has not been able to initialize a connection with the GPU.”
AutoCAD/Revit – “Hardware Acceleration is disabled. Software emulation mode is in use.”
“Guest is unlicensed”
Please see below for screenshots of said errors:
Additonally, when looking at the Virtual Machine VM vmware.log (inside of the VM’s folder on the ESXi datastore), you may see:
Guest is unlicensed. Cannot allocate more than 0x55 channels!
VGPU message 6 failed, result code: 0x1a
If this occurs, you’ll need to troubleshoot your vGPU licensing and resolve any issues occurring.
vGPU Type (vGPU Profile) mismatch
When using the default (“time-sliced”) vGPU deployment method, only a single vGPU type can be used on virtual machines or containers per physical GPU. Essentially all VMs or containers utilizing the physical GPU must use the same vGPU type.
If the physical GPU card has multiple GPUs (GPU chips), then a different type can be used on each physical GPU chip on the same card. 2 x GPUs on a single card = 2 different vGPU types.
Additionally, if you have multiple cards inside of a single host, the number of vGPU types you can deployed is based off the total number of GPUs across the total number of cards in your host.
If you configure multiple vGPU types and cannot support it, you will have issues starting VMs, as shown below:
Cannot power on VM with vGPU: Power on Failure, Insuffiecient resources
The error reads as follows:
Power On Failures
vCenter Server was unable to find a suitable host to power on the following virtual machines for the reasons listed below.
Insufficient resources. One or more devices (pciPassthru0) required by VM VDIWS01 are not available on host ESXi-Host.
Additionally, if provisioning via VMware Horizon, you may see: “NVIDIA GRID vGPU Support has detected a mismatch with the supported vGPUs”
Note: If you are using MIG (Multi Instance GPU), this does not apply as different MIG types can be applied to VMs from the same card/GPU.
vGPU or Passthrough with 16GB+ of Video RAM Memory
When attaching a vGPU to a VM, or passing through a GPU to a VM, with 16GB or more of Video RAM (Framebuffer memory), you may run in to a situation where the VM will not boot.
This is because the VM cannot map that large of memory space to be accesible for use.
Your users may report issues where their VDI guest VM freezes for a period of time during use. This could be caused due to VMware vMotion moving the virtual machine from one VMware ESXi host to another.
When experiencing issues, you may notice that “nvidia-smi” throws “ERR!” in the view. See the example below:
NVIDIA vGPU “nvidia-smi” reporting “ERR!”
This is an indicator that you’re in a fault or error state, and would recommend checking the ESXi Host log files, and the Virtual Machine log files for XID codes to identify the problem.
vGPU Driver Mismatch
When vGPU is deployed, drivers are installed on the VMware ESXi host (vGPU Manager Driver), as well as the guest VM virtual machine (guest VM driver).
NVIDIA vGPU Driver Mismatch
These two drivers must be compatible with each other. As per NVIDIA’s Documentation, see below for compatibility:
NVIDIA vGPU Manager with guest VM drivers from the same release
NVIDIA vGPU Manager with guest VM drivers from different releases within the same major release branch
NVIDIA vGPU Manager from a later major release branch with guest VM drivers from the previous branch
Additionally, if you’re using the LTS (Long Term Support Branch), the additional compatibility note applies.
NVIDIA vGPU Manager from a later long-term support branch with guest VM drivers from the previous long-term support branch
If you have a vGPU driver mismatch, you’ll likely see Event ID 160 from “nvlddmkm” reporting:
NVIDIA driver version mismatch error: Guest driver is incompatible with host drive.
To resolve this, you’ll need to change drivers on the ESXi host and/or Guest VM to a supported combination.
Upgrading NVIDIA vGPU
When upgrading NVIDIA vGPU drivers on the host, you may experience issues or errors stating that the NVIDIA vGPU modules or services are loaded and in use, stopping your ability to upgrade.
Normally an upgrade would be preformed by placing the host in maintenance mode and running:
However, this fails due to modules that are loaded and in use by the NVIDIA vGPU Manager Services.
Before attempting to upgrade (or uninstall and re-install), place the host in maintenance mode and run the following command:
/etc/init.d/nvdGpuMgmtDaemon stop
This should allow you to proceed with the upgrade and/or re-install.
VMware Horizon Black Screen
If you experiencing a blank or black screen when connecting to a VDI session with an NVIDIA vGPU on VMware Horizon, it may not even be related to the vGPU deployment.
To troubleshoot the VMware Horizon Black Screen, please review my guide on how to troubleshoot a VMware Horizon Blank Screen.
VM High CPU RDY (High CPU Ready)
CPU RDY (CPU Ready) is a state when a VM is ready and waiting to be scheduled on a physical host’s CPU. In more detail, the VM’s vCPUs are ready to be scheduled on the ESXi host’s pCPUs.
In rare cases, I have observed situations where VMs with a vGPU and high CPU RDY times, experience instability. I believe this is due to timing conflicts with the vGPU’s time slicing, and the VM’s CPU waiting to be scheduled.
To check VM CPU RDY, you can use one of the following methods:
Run “esxtop” from the CLI using the console or SSH
View the hosts performance stats on vCenter
Select host, “Monitor”, “Advanced”, “Chart Options”, de-select all, select “Readiness Average %”
When viewing the CPU RDY time in a VDI environment, generally we’d like to see CPU RDY at 3 or lower. Anything higher than 3 may cause latency or user experience issues, or even vGPU issues at higher values.
For your server virtualization environment (non-VDI and no vGPU), CPU Ready times are not as big of a consideration.
vGPU Profiles Missing from VMware Horizon
When using newer GPUs with older versions of VMware Horizon, you may encounter an issue with non-persistent instant clones resulting in a provisioning error.
This is caused by missing vGPU Types or vGPU Profiles, and requires either downloading the latest definitions, or possibly creating your own.
Issues with the VMware Horizon Indirect Display Driver
You may experience vGPU (and GPU) related issues when using certain applications due to the presence of the VMware Horizon Indirect Display Driver in the Virtual Machine. This is due to the application either querying the incorrect Display Adapter (VMware Indirect Display Driver), or due to lack of multi-display adapter support in the application.
The application, when detecting vGPU and/or GPU capabilities, may query the Indirect Display Adapter, instead of the vGPU in the VM. Resulting in failing to detect the vGPU and/or GPU capabilities.
To workaround this issue, uninstall the VMware Horizon Indirect Display Adapter from the Device Manager in the VM. Please note that if you simply disable it, the issue will still occur as the device must be uninstalled from the Device Manager.
Additionally, under normal circumstances you do not want to modify, change, or remove this display adapter. However this is only a workaround if you are experiencing this issue. Subsequent updates of the VMware Horizon agent will re-install this adapter.
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish.
Do you accept the use of cookies and accept our privacy policy? AcceptRejectCookie and Privacy Policy
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.