Jul 312019
 

Once I upgraded my Synology NAS to DSM 6.2 I started to experience frequent lockups and freezing on my DS1813+. The Synology DS1813+ would become unresponsive and I wouldn’t be able to SSH or use the web GUI to access it. In this state, NFS sometimes would become unresponsive.

When this occured, I would need to press and hold the power button to force it to shutdown, or pull the power. This is extremely risky as it can cause data corruption.

I’m currently running DSM 6.2.2-24922 Update 2.

The cause

This occurred for over a month until it started to interfere with ESXi hosts. I also noticed that the issue would occur when restarting any of my 3 ESXi hosts, and would definitely occur if I restarted more than one.

During the restarting, while logged in to the web GUI and SSH, I was able to see that the memory (RAM) usage would skyrocket. Finally the kernel would panic and attempt to reduce memory usage once the swap file had filled up (keep in mind my DS1813+ has 4GB of memory).

Analyzing “top” as well as looking at processes, I noticed the Synology index service was causing excessive memory and CPU usage. On a fresh boot of the NAS, it would consume over 500MB of memory.

The fix (Please scroll down and see updates)

In my case, I only use my Synology NAS for an NFS/iSCSI datastore for my ESXi environment, and do not use it for SMB (Samba/File Shares), so I don’t need the indexing service.

I went ahead and SSH’ed in to the unit, and ran the following commands to turn off the service. Please note, this needs to be run as root (use “sudo su” to elevate from admin to root).

synoservice --disable pkgctl-SynoFinder

While it did work, and the memory was instantly freed, the setting did not stay persistant on boot. To uninstalling the Indexing service, run the following command.

synopkg uninstall SynoFinder

Doing this resolved the issue and freed up tons of memory. The unit is now stable.

Update May 31st, 2020 – Increased Stability

After troubleshooting I noticed that the majority of stability issues would start occurring when ESXi hosts accessing NFS exports on the Synology diskstation are restarted.

I went ahead and stopped using NFS, started using iSCSI with MPIO, and the stability of the Synology NAS has greatly improved. I will continue to monitor this.

I still have plans to hack the Synology NAS and put my own OS on it.

Update May 2nd, 2020 – It’s still crashing, and really frustrating me

Today I had to restart my 3 ESXi hosts that are connected to the NFS export on the Synology Disk Station. After restarting the hosts, the Synology device has gone in to a lock-up state once again. It appears the issue is still present.

The device is responding to pings, and still provides access to SMB and NFS, but the web GUI, SSH, and console access is unresponsive.

I’m officially going to start planning on either retiring this device as this is unacceptable, especially in addition to all the issues over the years, or I may try an attempt at hacking the Synology Diskstation to run my own OS.

Update April 21st, 2020 – What I thought was the fix

After a few more serious crashes and lockups, I finally decided to do something about this. I went ahead and backed up my data, deleted the arrays, performed a factory reset on the Synology Disk Station. I also zero’d the metadata and MBR off all the drives.

I then configured the Synology NAS from scratch, used Btrfs (instead of ext4), restored the backups.

The NAS now appears to be running great and has not suffered any lockups or crashses since. I’ve also been noticing that memory management is working a lot better.

I have a feeling that this issue was caused due to the long term chaining of updates (numerous updates installed over time), or the use of the ext4 filesystem.

Update March 20th, 2020

As of March 2020 this issue is still occurring on numerous new firmware updates and version. I’ve tried reaching out to Synology on twitter directly a few times about this issue as well as e-mail (indirectly regarding something else) and have still not received or heard a response. As of this time the issue is still occurring on a regular basis on DSM 6.2.2-24922 Update 4. I’ve taken production and important workloads of the device since I can’t have the device continuously crashing or freezing overnight.

Update – August 16th, 2019

My Synology NAS has been stable since I applied the fix, however after an uptime of a few weeks, I noticed that when restarting servers, the memory usage does hike up (example, from 6% to 46%). However, with the fixes applied above, the unit is stable and no longer crashes.

Jan 182018
 

The Problem

I run a Sophos UTM firewall appliance in my VMware vSphere environment and noticed the other day that I was getting warnings on the space used on the ESXi host for the thin-provisioned vmdk file for the guest VM. I thought “Hey, this is weird”, so I enabled SSH and logged in to check my volumes. Everything looked fine and my disk usage was great! So what gives?

After spending some more time troubleshooting and not finding much, I thought to myself “What if it’s not unmapping unused blocks from the vmdk to the host ESXi machine?”. What is unampping you ask? When files get deleted in a guest VM, the free blocks aren’t automatically “unmapped” and released back to the host hypervisor in some cases.

Two things need to happen:

  1. The guest VM has to release these blocks (notify the hypervisor that it’s not using them, making the vmdk smaller)
  2. The host has to reclaim these and issue the unmap command to the storage (freeing up the space on the SAN/storage itself)

On a side note: In ESXi 6.5 and when using VMFS version 6 (VMFS6), the datastores can be configured for automatic unmapping. You can still kick it off manually, but many administrators would prefer it to happen automatically in the background with low priority (low I/O).

Most of my guest VMs automatically do the first step (releasing the blocks back to the host). On Windows this occurs with the defrag utility which issues trim commands and “trims” the volumes. On linux this occurs with the fstrim command. All my guest VMs do this automatically with the exception being the Sophos UTM appliance.

The fix

First, a warning: Enable SSH on the Sophos UTM at your own risk. You need to know what you are doing, this also may pose a security risk and should be disabled once your are finished. You’ll need to “su” to root once you log in with the “loginuser” account.

This fix not only applies to the Sophos UTM, but most other linux based guest virtual machines.

Now to fix the issue, I used the “df” command which provides a list of the filesystems, their mount points, and storage free for those fileystems. I’ve included an example below (this wasn’t the full list):

hostname:/root # df
Filesystem                       1K-blocks     Used Available Use% Mounted on
/dev/sda6                          5412452  2832960   2281512  56% /
udev                               3059712       72   3059640   1% /dev
tmpfs                              3059712      100   3059612   1% /dev/shm
/dev/sda1                           338875    15755    301104   5% /boot
/dev/sda5                         98447760 13659464  79513880  15% /var/storage
/dev/sda7                        129002700  4624468 117474220   4% /var/log
/dev/sda8                          5284460   274992   4717988   6% /tmp
/dev                               3059712       72   3059640   1% /var/storage/chroot-clientlessvpn/dev


You’ll need to run the fstrim command on every mountpoint for file systems “/dev/sdaX” (X means you’ll be doing this for multiple mountpoints). In the example above, you’ll need to run it on “/”, “/boot”, “/var/storage”, “/var/log”, “/tmp”, and any other mountpoints that use “/dev/sdaX” filesytems.

Two examples:

fstrim / -v

fstrim / -v

 

 

fstrim /var/storage -v

fstrim /var/storage -v

 

 

Again, you’ll repeat this for all mount points for your /dev/sdaX storage (X is replaced with the volume number). The command above only works with mountpoints, and not the actual device mappings.

Time to release the unused blocks to the SAN:

The above completes the first step of releasing the storage back to the host. Now you can either let the automatic unmap occur slowly overtime if you’re using VMFS6, or you can manually kick it off. I decided to manually kick it off using the steps I have listed at: https://www.stephenwagner.com/2017/02/07/vmfs-unmap-command-on-vsphere-6-5-with-vmfs-6-runs-repeatedly/

You’ll need to use esxcli to do this. I simply enabled SSH on my ESXi hosts temporarily.

Please note: Using the unmap command on ESXi hosts is very storage I/O intensive. Do this during maintenance window, or at a time of low I/O as this will perform MAJOR I/O on your hosts…

I issue the command (replace “DATASTORENAME” with the name of your datastore):

esxcli storage vmfs unmap --volume-label=DATASTORENAME --reclaim-unit=8

This could run for hours, possibly days depending on your “reclaim-unit” size (this is the block size of the unit you’re trying to reclaim from the VMFS file-system). In this example I choose 8, but most people do something larger like 100, or 200 to reduce the load and time for the command to complete (lower values look for smaller chunks of free space, so the command takes longer to execute).

I let this run for 2 hours on a 10TB datastore, however it may take way longer (possibly 6+ hours, to days).

Finally, not only are we are left with a smaller vmdk file, but we’ve released the space back to the SAN as well!

Feb 142017
 

Years ago, HPE released the GL200 firmware for their HPE MSA 2040 SAN that allowed users to provision and use virtual disk groups (and virtual volumes). This firmware came with a whole bunch of features such as Read Cache, performance tiering, thin provisioning of virtual disk group based volumes, and being able to allocate and commission new virtual disk groups as required.

(Please Note: On virtual disk groups, you cannot add a single disk to an already created disk group, you must either create another disk group (best practice to create with the same number of disks, same RAID type, and same disk type), or migrate data, delete and re-create the disk group.)

The biggest thing with virtual storage, was the fact that volumes created on virtual disk groups, could span across multiple disk groups and provide access to different types of data, over different disks that offered different performance capabilities. Essentially, via an automated process internal to the MSA 2040, the SAN would place highly used data (hot data) on faster media such as SSD based disk groups, and place regularly/seldom used data (cold data) on slower types of media such as Enterprise SAS disks, or archival MDL SAS disks.

(Please Note: To use the performance tier either requires the purchase of a performance tiering license, or is bundled if you purchase an HPE MSA 2042 which additionally comes with SSD drives for use with “Read Cache” or “Performance tier.)

When the firmware was first released, I had no impulse to try it out since I have 24 x 900GB SAS disks (only one type of storage), and of course everything was running great, so why change it? With that being said, I’ve wanted and planned to one day kill off my linear storage groups, and implement the virtual disk groups. The key reason for me being thin provisioning (the MSA 2040 supports the “DELETE” VAAI function), and virtual based snapshots (in my environment, I require over-commitment of the volume). As a side-note, as of ESXi 6.5, ESXi now regularly unmaps unused blocks when using the VMFS-6 filesystem (if left enabled), which is great for SANs using thin provision that support the “DELETE” VAAI function.

My environment consisted of 2 linear disk groups, 12 disks in RAID5 owned by controller A, and 12 disks in RAID5 owned by controller B (24 disks total). Two weekends ago, I went ahead and migrated all my VMs to the other datastore (on the other volume), deleted the linear disk group, created a virtual disk group, and then migrated all the VMs back, deleted my second linear volume, and created a virtual disk group.

Overall the process was very easy and fast. No downtime is required for this operation if you’re licensed for Storage vMotion in your vSphere environment.

During testing, I’ve noticed absolutely no performance loss using virtual vs linear, except for some functions that utilize the VAAI storage providers which of course run faster on the virtual disk groups since it’s being offloaded to the SAN. This was a major concern for me as block linear based storage is accessed more directly, then virtual disk groups which add an extra level of software involvement between the controllers and disks (block based access vs file based access for the iSCSI targets being provided by the controllers).

Unfortunately since I have no SSDs and no extra room for disks, I won’t be able to try the performance tiering, but I’m looking forward to it in the future.

I highly recommend implementing virtual disk groups on your HPE MSA 2040 SAN!

Feb 082017
 

When running vSphere 6.5, 6.7, or 7.0 (or later) and utilizing a VMFS6 datastore, we now have access to automatic LUN reclaim (this unmaps unused blocks on your LUN), which automatically unmaps unused storage on your LUNs. This is very handy for thin provisioned storage.

Essentially when you unmap blocks, it “tells” the storage (SAN) that unused (deleted or moved data) blocks aren’t being used anymore and to unmap them, which decreases the allocated size on the storage layer and frees up storage space. Your storage LUN must support VAAI and the “Delete” function.

Now taking this a step further, most of you have noticed that storage reclaim in the vSphere client has two settings for priority in the web client; none, or low.

For those of you who feel daring or want to spice life up a bit, you can manually increase the priority of the automated space reclamation through the esxcli command. While I can’t recommend this (obviously VMware chose to hide these options due to performance considerations), you can follow these instructions to change the priority higher.

Manually Configure Storage Reclaim (UNMAP) Priority

To view the current settings:

esxcli storage vmfs reclaim config get --volume-label=DATASTORENAME

To set ESXi reclaim/unmap priority to medium:

esxcli storage vmfs reclaim config set --volume-label=DATASTORENAME --reclaim-priority=medium

To set ESXi reclaim/unmap priority to high:

esxcli storage vmfs reclaim config set --volume-label=DATASTORENAME --reclaim-priority=high

You can confirm these settings took effect by running the first “get” command to view the settings, or view the datastore in the storage section of the vSphere client. While the vSphere client will reflect the higher priority setting, if you change it lower and then want to change it back higher, you’ll need to use the esxcli command to bring it up to a higher priority again.

Happy Virtualizing! Leave a comment!

Feb 072017
 

With vSphere 6.5 came VMFS 6, and with VMFS 6 came the auto unmap feature. This is a great feature, and very handy for those of you using thin provisioning on your datastores hosted on storage that supports VAAI. However, you still have the ability to perform a manual UNMAP at high priority, even with VMware vSphere 7 and vSphere 8.

A while back, I noticed something interesting when running the manual unmap command for the first time. It isn’t well documented, but I thought I’d share for those of you who are doing a manual LUN unmap for the first time. This document will also provide you with the command to perform a manual unmap on a VMFS datastore.

Reason:

Automatic unmap (auto space reclamation) is on, however you want to speed it up or have a large chunk of block’s you want unmapped immediately, and don’t want to wait for the auto feature.

Problem:

I wasn’t noticing any unmaps were occurring automatically and I wanted to free up some space on the SAN, so I decided to run the old command to forcefully run the unmap to free up some space:

esxcli storage vmfs unmap --volume-label=DATASTORENAME --reclaim-unit=200

(The above command runs a manual unmap on a datastore)

After kicking it off, I noticed it wasn’t completing as fast as I thought it should be. I decided to enable SSH on the host and took a look at the /var/log/hostd.log file. To my surprise, it wasn’t stopping at a 200 block reclaim, it just kept cycling running over and over (repeatedly doing 200 blocks):

2017-02-07T14:12:37.365Z info hostd[XXXXXXXX] [Originator@XXXX sub=Libs opID=esxcli-fb-XXXX user=root] Unmap: Async Unmapped 200 blocks from volume XXXXXXXX-XXXXXXXX-XXXX-XXXXXXXXX
2017-02-07T14:12:37.978Z info hostd[XXXXXXXX] [Originator@XXXX sub=Libs opID=esxcli-fb-XXXX user=root] Unmap: Async Unmapped 200 blocks from volume XXXXXXXX-XXXXXXXX-XXXX-XXXXXXXXX
2017-02-07T14:12:38.585Z info hostd[XXXXXXXX] [Originator@XXXX sub=Libs opID=esxcli-fb-XXXX user=root] Unmap: Async Unmapped 200 blocks from volume XXXXXXXX-XXXXXXXX-XXXX-XXXXXXXXX
2017-02-07T14:12:39.191Z info hostd[XXXXXXXX] [Originator@XXXX sub=Libs opID=esxcli-fb-XXXX user=root] Unmap: Async Unmapped 200 blocks from volume XXXXXXXX-XXXXXXXX-XXXX-XXXXXXXXX
2017-02-07T14:12:39.808Z info hostd[XXXXXXXX] [Originator@XXXX sub=Libs opID=esxcli-fb-XXXX user=root] Unmap: Async Unmapped 200 blocks from volume XXXXXXXX-XXXXXXXX-XXXX-XXXXXXXXX
2017-02-07T14:12:40.426Z info hostd[XXXXXXXX] [Originator@XXXX sub=Libs opID=esxcli-fb-XXXX user=root] Unmap: Async Unmapped 200 blocks from volume XXXXXXXX-XXXXXXXX-XXXX-XXXXXXXXX
2017-02-07T14:12:41.050Z info hostd[XXXXXXXX] [Originator@XXXX sub=Libs opID=esxcli-fb-XXXX user=root] Unmap: Async Unmapped 200 blocks from volume XXXXXXXX-XXXXXXXX-XXXX-XXXXXXXXX
2017-02-07T14:12:41.659Z info hostd[XXXXXXXX] [Originator@XXXX sub=Libs opID=esxcli-fb-XXXX user=root] Unmap: Async Unmapped 200 blocks from volume XXXXXXXX-XXXXXXXX-XXXX-XXXXXXXXX
2017-02-07T14:12:42.275Z info hostd[XXXXXXXX] [Originator@XXXX sub=Libs opID=esxcli-fb-9XXXX user=root] Unmap: Async Unmapped 200 blocks from volume XXXXXXXX-XXXXXXXX-XXXX-XXXXXXXXX
2017-02-07T14:12:42.886Z info hostd[XXXXXXXX] [Originator@XXXX sub=Libs opID=esxcli-fb-XXXX user=root] Unmap: Async Unmapped 200 blocks from volume XXXXXXXX-XXXXXXXX-XXXX-XXXXXXXXX

That’s just a small segment of the logs, but essentially it just kept repeating the unmap/reclaim over and over in 200 block segments. I waited hours, tried to issue a “CTRL+C” to stop it, however it kept running.

I left it to run overnight and it did eventually finish while I was sleeping. I’m assuming it attempted to unmap everything it could across the entire datastore. Initially I thought this command would only unmap the specified block size.

When running this command, it will continue to cycle in the block size specified until it goes through the entire LUN. Be aware of this when you’re planning on running the command.

Essentially, I would advise not to manually run the unmap command unless you’re prepared to unmap and reclaim ALL your unused allocated space on your VMFS 6 datastore. In my case I did this because I had 4TB of deleted data that I wanted to unmap immediately, and didn’t want to wait for the automatic unmap.

I thought this may have been occurring because the automatic unmap function was on, so I tried it again after disabling auto unmap. The behavior was the same and it just kept running.

If you are tempted to run the unmap function, keep in mind it will continue to scan the entire volume (despite what block count you set). With this being said, if you are firm on running this, choose a larger block count (200 or higher) since smaller blocks will take forever (tested with a block size of 1 and after analyzing the logs and rate of unmaps, it would have taken over 3 months to complete on a 9TB array).

Update May 11th 2018: When running the manual unmap command with smaller “reclaim-unit” values (such as 1), your host may become unresponsive due to a memory overflow. vMotion’s will cease to function, and your ESXi host may need a restart to become fully functional. I’ve experienced this behavior twice. I highly suggest that if you perform this command, you do so while the host is in maintenance mode, and that your restart the host after a successful unmap sweep.